前回の
note13の続きです。グルーオンの作用はnote13の式(4):
\[\begin{eqnarray} S_q &=& \int \Big[ \hf A_\mu^a (- \d^2 ) A_\mu^a + \bar{c}^a ( -\d^2 ) c^a + g f^{abc} A_\mu^b A_\nu^c \d_\mu A_\nu^a \\ && ~~~~~~~~~~~~~~~~~ + \qu g^2 f^{abc}f^{apq}A_\mu^b A_\nu^c A_\mu^p A_\nu^q - g f^{abc} \d_\mu \bar{c}^a A_\mu^c c^b \Big] d^4 x \tag{1} \end{eqnarray} \]
で与えられる。またフェルミ粒子との相互作用はnote13の式(5)より
\[ S_{int} = \int \bar{q} ( \ga \cdot D + m ) q = \int \Big[ \bar{q} ( \ga \cdot \d + m ) q - ig \bar{q} \ga \cdot A q \Big] \tag{2} \]
と表せる。これよりグルーオン伝播関数の$g^2$オーダーでの補正は下記の(1), (2), (3), (4)のファインマン図で与えられることが分かる。
ただし、(1),(2)はグルーオンのループ補正、(3)はゴースト場のループ補正、(4)はフェルミ粒子によるループ補正を表す。ここでは、例として(4)の1ループ量子補正の計算を行う。
\[ e^{- S_{int} } = 1 - S_{int} + \frac{(-ig)^2}{2!} \bra \bar{q} {A \!\!\! /} \cdot t q ~\bar{q} {A \!\!\! /} \cdot t q \ket + \cdots \]
なので、グルーオン伝播関数の$g^2$オーダーの項は
\[ \begin{eqnarray} I_{1loop} &=& \frac{(-ig)^2}{2!} \int A_\mu^a (x) \bra \bar{q} (x) t^a \ga_\mu q(x) \, \bar{q} (y) t^a \ga_\nu q(y) \ket A_\nu^b (y) d^4 x d^4 y \\ &=& \frac{g^2}{2} \int A_\mu^a (x) t_{ij}^{a} t_{kl}^{b} \tr \ga_\mu \bra q^j (x) \bar{q}^k (y) \ket \ga_\nu \bra q^l (y) \bar{q}^i (x) \ket A_\nu^b (y) d^4 x d^4 y \\ &=& \frac{g^2}{2} \int A_\mu^a (x) A_\nu^b (y) \tr (t^a t^b ) ~ \tr \int \ga_\mu \frac{e^{p (x- y) }}{i {p \!\!\! / } + m} \frac{d^4 p}{(2 \pi)^4 } \int \ga_\nu \frac{e^{q (y- x) }}{i {q \!\!\! / } + m} \frac{d^4 q}{(2 \pi)^4 } ~ d^4 x d^4 y \end{eqnarray} \]
ここで、
\[ A_\mu^a (x) = \int \frac{d^4 }{(2 \pi)^4} A_\mu^a (k ) e^{ikx} \]
などの運動量表示$A_\mu^a (k)$を用いると
\[ \begin{eqnarray} I_{1loop} &=& \frac{g^2}{2} \int \tr (t^a t^b ) A_\mu^a (k) A_\nu^b (k') \del ( p-q + k) \del (q-p + k') \\ && ~~~~~~~~~~~~~~~~~~ \tr \left( \ga_\mu \frac{1}{i {p \!\!\! / } + m} \ga_\nu \frac{1}{i {q \!\!\! / } + m} \right) \frac{d^4 p}{(2 \pi)^4 }\frac{d^4 q}{(2 \pi)^4 } \, d^4 k d^4 k' \\&=& \frac{g^2}{2} \int \tr (t^a t^b ) A_\mu^a (k) A_\nu^b (-k) \, \tr \left( \ga_\mu \frac{1}{i {p \!\!\! / } + m} \ga_\nu \frac{1}{i ({p \!\!\! / } + {k \!\!\! / }) + m} \right) \frac{d^4 k}{(2 \pi)^4 }\frac{d^4 p}{(2 \pi)^4 } \tag{3}\end{eqnarray} \]
ここで一時的にフェルミ粒子の質量を無視すると
\[ \begin{eqnarray} \tr \left( \ga_\mu \frac{-i{p \!\!\! / }}{p^2} \ga_\nu \frac{-i ({p \!\!\! / } + {k \!\!\! / }) }{(p+k)^2} \right) &=& - \frac{\tr \big[ \ga_\mu {p \!\!\! / } \ga_\nu ({p \!\!\! / } + {k \!\!\! / }) \big]}{p^2 (p+k)^2 } \\ &=& - \frac{4 \big[ p_\mu ( p+k )_\nu + p_\nu (p+k)_\mu - \del_{\mu\nu} p \cdot (p + k) \big] }{p^2 (p+k)^2 } \end{eqnarray} \]
なので
\[ I_{1loop} = -2 g^2 \int \frac{d^4 k}{(2 \pi)^4 } \tr (t^a t^b ) A_\mu^a (k) A_\nu^b (-k) ~ I_{\mu\nu} (k) \tag{4}\]
となる。ただし、
\[ \begin{eqnarray} I_{\mu\nu} (k) &=& \int \frac{d^4 p}{(2 \pi)^4 } \frac{ \big[ p_\mu ( p+k )_\nu + p_\nu (p+k)_\mu - \del_{\mu\nu} p \cdot (p + k) \big] }{p^2 (p+k)^2 } \\&=& \int \frac{d^4 p}{(2 \pi)^4 } \int_0^1 dz \frac{ \big[ p_\mu ( p+k )_\nu + p_\nu (p+k)_\mu - \del_{\mu\nu} p \cdot (p + k) \big] }{\big[ p^2 (1-z) + (p+k)^2 z \big]^2} \\&=& \int \frac{d^4 p}{(2 \pi)^4 } \int_0^1 dz \frac{ \big[ p_\mu ( p+k )_\nu + p_\nu (p+k)_\mu - \del_{\mu\nu} p \cdot (p + k) \big] }{\big[ (p+kz)^2+ k^2 z (1- z) \big]^2} \end{eqnarray} \]
ここで、ファインマン積分公式
\[ \frac{1}{AB} = \int_0^1 dz \frac{1}{\big[ A (1-z) + B z \big]^2} \]
を用いた。$p \rightarrow p - kz$と変数変換すると
\[ I_{\mu\nu} (k) = \int_0^1 dz \int \frac{d^4 p}{(2 \pi)^4 } \frac{ 2 p_\mu p_\nu - p^2 \del_{\mu\nu} + z(z-1) \left( 2 k_\mu k_\nu - k^2 \del_{\mu\nu} \right)}{\big[ p^2+ k^2 z (1- z) \big]^2} \tag{5} \]
となる。分子の計算で$p$の次数が奇数の場合は$p$についての対称積分のため消去されることに注意。つぎに、$d$次元ユークリッド空間での積分
\[ \begin{eqnarray} \int \frac{d^d p}{(2 \pi )^d} \frac{1}{( p^2 + m^2 )^n} &=& \frac{1}{(4 \pi)^{d/2}}\frac{\Ga (n-\frac{d}{2})}{\Ga (n)} \left( \frac{1}{m^2} \right)^{n - \frac{d}{2}} \\ \int \frac{d^d p}{(2 \pi )^d} \frac{p^2}{( p^2 + m^2 )^n} &=& \frac{1}{(4 \pi)^{d/2}} \frac{d}{2} \frac{\Ga (n-\frac{d}{2} -1)}{\Ga (n)} \left( \frac{1}{m^2} \right)^{n - \frac{d}{2}-1} \end{eqnarray} \tag{6}\]
を使って式(5)を変形する。