2020-05-12

Legendre symbols $\lambda_{p} (n )$ for prime $p$ up to 100

前回との関連でCoCalcの計算結果を記録しておきます。$p$ を100までの素数としてルジャンドル記号 $\lambda_{p} (n )$(平方剰余記号とも呼ばれる)が1になるときの $n \in \F_{p}^{\times}$ $(n = 1,2, \cdots, p-1)$ の値を列挙します。ルジャンドル記号の計算コマンドはこちらを参考にしました。

$p$$n$ for $\lambda_{p} (n) = 1$
21
31
51, 4
71, 2, 4
111, 3, 4, 5, 9
131, 3, 4, 9, 10, 12
171, 2, 4, 8, 9, 13, 15, 16
191, 4, 5, 6, 7, 9, 11, 16, 17
231, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18
291, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28
311, 2, 4, 5, 7, 8, 9, 10, 14, 16, 18, 19, 20, 25, 28
371, 3, 4, 7, 9, 10, 11, 12, 16, 21, 25, 26, 27, 28, 30, 33, 34, 36
411, 2, 4, 5, 8, 9, 10, 16, 18, 20, 21, 23, 25, 31, 32, 33, 36, 37, 39, 40
431, 4, 6, 9, 10, 11, 13, 14, 15, 16, 17, 21, 23, 24, 25, 31, 35, 36, 38, 40, 41
471, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 17, 18, 21, 24, 25, 27, 28, 32, 34, 36, 37, 42
531, 4, 6, 7, 9, 10, 11, 13, 15, 16, 17, 24, 25, 28, 29, 36, 37, 38, 40, 42, 43, 44, 46, 47, 49, 52
591, 3, 4, 5, 7, 9, 12, 15, 16, 17, 19, 20, 21, 22, 25, 26, 27, 28, 29, 35, 36, 41, 45, 46, 48, 49, 51, 53, 57
611, 3, 4, 5, 9, 12, 13, 14, 15, 16, 19, 20, 22, 25, 27, 34, 36, 39, 41, 42, 45, 46, 47, 48, 49, 52, 56, 57, 58, 60
671, 4, 6, 9, 10, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 29, 33, 35, 36, 37, 39, 40, 47, 49, 54, 55, 56, 59, 60, 62, 64, 65
711, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 19, 20, 24, 25, 27, 29, 30, 32, 36, 37, 38, 40, 43, 45, 48, 49, 50, 54, 57, 58, 60, 64
731, 2, 3, 4, 6, 8, 9, 12, 16, 18, 19, 23, 24, 25, 27, 32, 35, 36, 37, 38, 41, 46, 48, 49, 50, 54, 55, 57, 61, 64, 65, 67, 69, 70, 71, 72
791, 2, 4, 5, 8, 9, 10, 11, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 31, 32, 36, 38, 40, 42, 44, 45, 46, 49, 50, 51, 52, 55, 62, 64, 65, 67, 72, 73, 76
831, 3, 4, 7, 9, 10, 11, 12, 16, 17, 21, 23, 25, 26, 27, 28, 29, 30, 31, 33, 36, 37, 38, 40, 41, 44, 48, 49, 51, 59, 61, 63, 64, 65, 68, 69, 70, 75, 77, 78, 81
891, 2, 4, 5, 8, 9, 10, 11, 16, 17, 18, 20, 21, 22, 25, 32, 34, 36, 39, 40, 42, 44, 45, 47, 49, 50, 53, 55, 57, 64, 67, 68, 69, 71, 72, 73, 78, 79, 80, 81, 84, 85, 87, 88
971, 2, 3, 4, 6, 8, 9, 11, 12, 16, 18, 22, 24, 25, 27, 31, 32, 33, 35, 36, 43, 44, 47, 48, 49, 50, 53, 54, 61, 62, 64, 65, 66, 70, 72, 73, 75, 79, 81, 85, 86, 88, 89, 91, 93, 94, 95, 96

$\la_p (n) \equiv n^{\frac{p-1}{2}}$ $(mod ~ p)$ より
\begin{eqnarray}
 \la_p (1) &=& 1 \\
 \la_p (-1) & =& (-1)^{\frac{p-1}{2}} ~~~ (p \ne 2)
\end{eqnarray}
が分かる。また、
\[
 \la_p (2) = (-1)^{\frac{p^{2} -1}{8}} ~~~ (p \ne 2)
\]
が知られている。上記のリストからこれらの関係式を確認することが出来る。

$p = 37$ まではこれらを手書きで記録していたのですがさすがにそれ以上となると CoCalc から直接コピペした方が早いのでここに保存しました。ここ最近の外出自粛中はこれらの値と保型形式のヘッケ固有値が関連付くのかどうか調べて無駄に時間を使っているような気がします。どうにかならないものか。はて。

0 件のコメント: