前回に引き続き原子内電子の光吸収・発光過程の選択則について考える。選択則は放射過程の行列要素
⟨α|Hint|β⟩=em⟨α|→A⋅→p|β⟩=ieℏ⟨α|→A⋅(H0→x−→xH0)|β⟩
にウィグナー-エッカルトの定理を適用して導出できる。前回はゼロ次近似から電気双極子遷移の選択則を求めたが、今回は1次近似から磁気双極子遷移と電気四重極子遷移の選択則を求める。
磁気双極子遷移と電気四重極子遷移の選択則
微小因子 →k⋅→x について1次までのオーダーで行列要素(13.85)を表すと
⟨α|Hint|β⟩=em⟨α|→A⋅→p|β⟩≈e⟨α|(1+i→k⋅→x)Aω→ˆe⋅˙→x|β⟩=⟨α|H(0)int|β⟩+⟨α|H(1)int|β⟩
と書ける。ただし、⟨α|H(0)int|β⟩ は前回求めたゼロ次のオーダーの項
⟨α|H(0)int|β⟩=ieℏˆeaAω(Eα−Eβ)⟨α|xa|β⟩=e˙→A⋅⟨α|→x|β⟩=e→E⋅⟨α|→x|β⟩
である。ただし、→E=∂∂t→A=˙→A は外部電場を表す。ベクトル・ポテンシャル →A は
→A=→ˆeAe−i(ωt−→k⋅→x)=→ˆeAωei→k⋅→x
とパラメータ表示される。ただし、Aω=Ae−iωt であり、角運動量 ω はエネルギー保存則から
ω=Eα−Eβℏ=ωα−ωβ
と決まる。ここでは、放射ゲージを
ϕ=0, ∇⋅→A=0
採用していることに注意しよう。1次のオーダーの行列要素は
⟨α|H(1)int|β⟩=iekaˆebAω⟨α|xa˙xb|β⟩=iemkaˆebAω⟨α|xapb|β⟩=ie2mkaˆebAω⟨α|(xapb+pbxa)|β⟩
と表せる。ただし、xapb を反対称成分と対称成分に
xapb=12(xapb−pbxa)+12(xapb+pbxa)=iℏ2δab+12(xapb+pbxa)
と分離して、関係式 kaˆebδab=0 を用いた。対称成分はハイゼンベルク方程式
1m→p=˙→x=iℏ[H0,→x]
を用いて
xapb+pbxa=m2(xa˙xb+˙xbxa)=im2ℏxa(H0xb−xbH0)+m2˙xbxa=im2ℏ(H0xaxb−xaxbH0)−m2(˙xaxb−˙xbxa)
と計算できる。よって、1次のオーダーの行列要素(13.97)は
⟨α|H(1)int|β⟩=−e2ℏkaˆebAω⟨α|[H0,xaxb]|β⟩−ie2mkaˆebAω⟨α|(paxb−pbxa)|β⟩
と書ける。電気双極子近似(13.90)の場合と同様に、右辺の第1項は
−e2ℏkaˆebAω⟨α|[H0,xaxb]|β⟩=−e2ℏkaˆebAω(Eα−Eβ)⟨α|xaxb|β⟩=−e2ka˙Ab⟨α|xaxb|β⟩=ie2∇aEb⟨α|xaxb|β⟩=ie2∇aEb⟨α|Tab|β⟩
と変形できる。ただし、Tab は13.2節で定義した階数2の対称テンソル
Tab=xaxb−13δabx2
である。外部電場に対して ∇aEbδab=∇⋅→E=0 が成り立つことに注意しよう。式(13.100)右辺の第2項は
−ie2mkaˆebAω⟨α|(paxb−pbxa)|β⟩=−ie2mkaˆebAω⟨α|ϵabcϵklcpkxl|β⟩=ie2mϵabckaˆebAω⟨α|Lc|β⟩=e2mϵabc∇aAb⟨α|Lc|β⟩=e2m→B⋅⟨α|→L|β⟩
と変形できる。ただし、関係式 →B=∇×→A と →L=→x×→p を用いた。
以上、まとめると
⟨α|H(1)int|β⟩=ie2∇aEb⟨α|Tab|β⟩+e2m→B⋅⟨α|→L|β⟩
と求まる。右辺の第1項、第2項はそれぞれ電気四重極子遷移、磁気双極子遷移を記述する。電気双極子遷移の場合と同様に、第2項の選択則はクレブシュ-ゴルダン係数 C1ll′∗amm′ で決定される。ただし、磁気双極子遷移の場合は状態のパリティが保存される。つまり、Δl=l′−l に対して、(−1)Δl=1 が課される。言い換えると、磁気双極子遷移の選択則は
Δl=0Δj=0,±1 ただし (j,j′)≠(0,0)Δm=0,±1 ただし Δj=0 の場合は (m,m′)≠(0,0)
で与えられる。
同様に、ウィグナー-エッカルトの定理を適用すると電気四重極子遷移の選択則はクレブシュ-ゴルダン係数
C2ll′∗Amm′=⟨2Alm|l′m′⟩=(−1)l′−l−2⟨lm2A|l′m′⟩=δm′,m+A(−1)l′−l−2⟨lm2A|l′m′⟩
から導ける。ただし、A=0,±1,±2 である。上式より磁気量子数 m に関する選択則は Δm=0,±1,±2 であることが簡単に分かる。磁気双極子遷移の場合と同じく、始状態と終状態のパリティは同じである。よって、軌道角運動量量子数 l に関する選択則は例外的な場合を除いて Δl=0,±2 と書ける。例外となる場合は下表で示すクレブシュ-ゴルダン係数 ⟨lm2A|l′m+A⟩ の具体的な形から判別できる。
l′A=2A=1l+2√(l+m+1)(l+m+2)(l+m+3)(l+m+4)(2l+1)(2l+2)(2l+3)(2l+4)√(l+m+1)(l+m+2)(l+m+3)(l−m+1)(l+1)(l+2)(2l+1)(2l+3)l+1−√(l+m+1)(l+m+2)(l+m+3)(l−m)l(l+1)(2l+1)(2l+4)−(l−2m)√(l+m+1)(l+m+2)l(l+1)(2l+1)(2l+4)l√3(l+m+1)(l+m+2)(l−m−1)(l−m)2l(l+1)(2l−1)(2l+3)−(2m+1)√3(l+m+1)(l−m)2l(l+1)(2l−1)(2l+3)l−1−√(l+m+1)(l−m−2)(l−m−1)(l−m)(l−1)l(2l+1)(2l+2)(l+2m+1)√(l−m−1)(l−m)(l−1)l(2l+1)(2l+2)l−2√(l−m−3)(l−m−2)(l−m−1)(l−m)(2l−2)(2l−1)2l(2l+1)−√(l+m)(l−m−2)(l−m−1)(l−m)(l−1)l(2l−1)(2l+1)
l′A=0l+2√3(l+m+1)(l+m+2)(l−m+1)(l−m+2)(l+1)(2l+1)(2l+3)(2l+4)l+1m√3(l+m+1)(l−m+1)l(l+1)(l+2)(2l+1)l3m2−l(l+1)√l(l+1)(2l−1)(2l+3)l−1−m√3(l+m)(l−m)(l−1)l(l+1)(2l+1)l−2√3(l+m−1)(l+m)(l−m−1)(l−m)l(2l−2)(2l−1)(2l+1)
l′A=−1A=−2l+2√(l−m+1)(l−m+2)(l−m+3)(l+m+1)(l+1)(l+2)(2l+1)(2l+3)√(l−m+1)(l−m+2)(l−m+3)(l−m+4)(2l+1)(2l+2)(2l+3)(2l+4)l+1(l+2m)√(l−m+1)(l−m+2)l(l+1)(2l+1)(2l+4)√(l−m+1)(l−m+2)(l−m+3)(l+m)l(l+1)(2l+1)(2l+4)l(2m−1)√3(l−m+1)(l+m)2l(l+1)(2l−1)(2l+3)√3(l−m+1)(l−m+2)(l+m−1)(l+m)2l(l+1)(2l−1)(2l+3)l−1−(l−2m+1)√(l+m−1)(l+m)(l−1)l(2l+1)(2l+2)√(l−m+1)(l+m−2)(l+m−1)(l+m)(l−1)l(2l+1)(2l+2)l−2−√(l−m)(l+m−2)(l+m−1)(l+m)(l−1)l(2l−1)(2l+1)√(l+m−3)(l+m−2)(l+m−1)(l+m)(2l−2)(2l−1)2l(2l+1)
これらの値はクレブシュ-ゴルダン係数の一般形 (Racah 公式)
⟨j1m1j2m2|JM⟩=δM,m1+m2√(2J+1)(J+j1−j2)!(J−j1+j2)!(j1+j2−J)!(j1+j2+J+1)!×√(J+M)!(J−M)!(j1+m1)!(j1−m1)!(j2+m2)!(j2−m2)!×∑k((−1)kk!(j1+j2−J−k)!(j1−m1−k)!(j2+m2−k)!×1(J−j2+m1+k)!(J−j1−m2+k)!)
から求めた。ただし、整数 k の和は階乗をとる数がすべて非負である k だけに限られる。この公式は M≥0 かつ j1≥j2 の場合に適用されるが、それ以外の場合は関係式
⟨j1−m1j2−m2|J−M⟩=(−1)J−j1−j2⟨j1m1j2m2|JM⟩⟨j2m2j1m1|JM⟩=(−1)J−j1−j2⟨j1m1j2m2|JM⟩
から求まる。
⟨ll20|ll⟩=√l(2l−1)(l+1)(2l+3)⟨ll20|l+1l⟩=√3l(l+1)(l+2)⟨ll20|l−1l−1⟩=−√3(l−1)(2l−1)l(l+1)(2l+1)⟨ll21|l+1l+1⟩=√ll+2⟨ll2−1|l+1l−1⟩=3√l(l+1)(l+2)(2l+1)
を得る。これらより ⟨lm2A|l′m+A⟩ が例外的にゼロとなるのは (l,l′) が
(l,l′)=(0,0), (0,1), (1,0)
となる場合であることが分かる。また、スピンの効果を含めると ⟨jm2A|j′m+A⟩ がゼロとなるのは (j,j′) が
(j,j′)=(0,0), (0,1), (1,0), (12,12)
となる場合であることが分かる。まとめると、電気四重極子遷移の選択則は
Δl=0,±2 ただし (l,l′)≠(0,0)Δj=0,±1,±2 ただし (j,j′)≠(0,0),(0,1),(1,0),(12,12)Δm=0,±1
で与えられる。
以上、この小節では水素型原子の放射現象の選択則の導出において如何にウィグナー-エッカルトの定理が有用で強力であるかを見た。一般に、ウィグナー-エッカルトの定理は分光学の問題に形式的な解を与える。以下ではウィグナー-エッカルトの定理のその他の応用例について考える。
0 件のコメント:
コメントを投稿